Finished Projects

Main content

General Information: Some of the following information is only available in German.

Accordion. Press Tab to navigate to entries, then Enter to open or collapse content.



OMLETH: A platform for location-based mobile learning at ETH Zurich

Project Duration: 01.08.2014–31.12.2015
Project Leader: Prof. Dr. M. Raubal / Dr. P. Kiefer
Internal Researcher: Christian Sailer
Funding: Innovedum ETH Zürich


OMLETH I in the Innovedum project database

Our project OMLETH is funded by the Innovedum fund of ETH Zurich. OMLETH is a joint research project between the Chair for the History of Urban Design gta and the Chair of Geoinformation Engineering.

Biomass Power Plant

Design, operating strategies and potential of a biogenic CHP swarm

Project Duration: 01.11.2012–31.12.2015
Project Leader: Prof. Dr. K. Boulouchos
Internal Researchers: Fabrizio Noembrini, Martin Raubal, René Buffat, Stefano Grassi, Turhan Demiray
External Researchers: Hal Turton, Kannan Ramachandran
Funding: Swiss public institutions

An increasing share of fluctuating renewable electricity production requires more flexibility in stabilising the electricity grid. Decentralised biogenic combined heat and power plants could play a significant role. The potential of this approach is analysed by spatial-temporal based modelling.

Characterizing human mobility from mobile phone usage

Characterizing human mobility from mobile phone usage

Project Duration: 01.09.2012–31.12.2013
Project Leader: Prof. Dr. M. Raubal
PhD Candidate: Yihong Yuan
Funding: Schweizerischer Nationalfond (SNF)


Our mobile information society depends increasingly on the use of Information and Communication Technologies (ICTs) such as mobile phones. People’s usage of these technologies impacts many aspects of their lives but the relationship between ICT and human activities is not fully known. An understanding of this relationship will help in predicting people’s mobility patterns and provide important guidelines for maintaining sustainable transportation, updating environmental policies, and designing early warning and emergency response systems.

The goal of this project is to develop a framework for extracting and characterizing human mobility patterns from georeferenced mobile phone datasets. We analyze the different types of information that can be stored in mobile phone datasets, and develop human mobility models and data mining methodologies for spatio-temporal knowledge discovery. These models provide the basis for investigating and quantifying the relationship between human physical travel, communication travel, and environmental structure. Our research also addresses issues of uncertainty, which arise from the natural variability of human mobility, the inaccuracy and imprecision of recorded trajectories, and the imperfection of the underlying models. In order to evaluate the developed models and the relationship between human mobility patterns, spatial structure, and mobile phone usage, we will utilize a large dataset of northeast China.

This research will enhance our understanding of the relationship between human mobility and ICT in general, and between human mobility patterns and mobile phone usage in particular. We will advance conventional geographic knowledge discovery by focusing on knowledge extraction from sparse datasets with low resolution and individual attributes. The case study from northeast China allows us to examine the influence of mobile phone usage in a highly populated and rapidly developing country.

The project contributes to both scientific advances and professional development. The application of advanced geographic knowledge discovery methods to mobile data is highly important in the age of instant access and extremely relevant in diverse fields, ranging from geography to transportation, planning, and economics. The results of our project can be directly utilized by makers of environmental and transportation policies in order to direct people to more sustainable behaviors, as well as private business people in the Location-Based Services market. Our dataset from China covers over 5 million people and is therefore an excellent case study for the examination of public policies by a strong central government.

Page URL:
Fri Jul 21 18:38:56 CEST 2017
© 2017 Eidgenössische Technische Hochschule Zürich